CORRESPONDENCE

Healthcare students and workers’ knowledge about transmission, epidemiology and symptoms of Zika fever in four cities of Colombia

KEYWORDS
Zika; Knowledge; Epidemiology; Colombia; Latin America

Dear Editor,

Latin America has recently witnessed the unprecedented arrival of emerging arboviruses such as Chikungunya and Zika [1–4]. This represents complex epidemiological scenarios, where assessing knowledge amongst healthcare students and workers about the epidemiology, symptoms and transmission of Zika in cities of Colombia would be relevant [5]. Particularly because no information about Zika was available in national or local settings before 2015.

An observational cross-sectional study was performed among assistants who attended a symposium on Zika on June–July (2015), simultaneously in four cities: Pereira and Dosquebradas, Risaralda; Sincelejo, Sucre and Cartagena, Bolivar (all of them, endemic for Dengue and Chikungunya).

Attendees who agreed to be part (convenience sample), filled out a questionnaire about basic knowledge on the epidemiology, symptoms and prevention of disease (five questions), before and after the meeting.

A total of 269 questionnaires were applied (93 in Pereira, 91 in Sincelejo, 65 in Dosquebradas and 30 in Cartagena). The mean age of participants was 32.2 year-old (±12.1; range 17–78, 65.9% female), 32.6% were physicians (15.4% general practitioners and 17.2% specialists), 20.4% nurses, 15.8% medical students.

Knowledge about virus transmission was significantly higher previous to the intervention in Cartagena (100%), being consistently high as well in the other assessed cities (>80%). Regard the frequency of symptoms, initial degree of knowledge was low among all of cities (<35%, p ≥ 0.05). Information about incubation period was significantly higher before at Pereira (80%) and lower in the other cities (<65%). Regard the most frequent symptoms associated and disease prevention, knowledge was also significantly higher in Pereira (91% and 100%, respectively). Also, in Pereira we observed a significant increase in questions 2 and 3 (33.3%–83.3% and 80.0%–97.9%, p < 0.05), reaching 100% of correct answer choice for the rest of the questions. In Cartagena 100% of correct answers were reached after. A similar pattern was observed for Sincelejo, except for question 5 in which 95.7% was obtained after intervention, with significant increase when compared to the baseline (p = 0.04). For Dosquebradas, a significant rise was observed for question 2 (p = 0.001), with a boost of up to 100% for question 1, as well as a >89% trend in final correct answers for the other questions (Table 1).

Despite its limitations, this is the first study to measure the level of knowledge on transmission, epidemiology and symptoms of Zika fever. Up to July 15, 2015, when the trainings were held, there were not officially confirmed cases of Zika in Colombia, contrasting to its neighboring country of Brazil, where almost 50 cases were reported. Since September 22, 2015, the first nine cases, were reported. Until November 28, 2015, there have been more than 3700 suspected cases, with 578 RT-PCR-laboratory-confirmed Zika cases in Colombia. This would have been impact in clinical and epidemiological suspicion, then giving the relevance of preparedness and alert before the arrival of Zika to these regions, in order to achieve a timely diagnosis and optimal disease management in endemic regions, but also for travelers returning from these areas [2,4].

Funding
None.

Conflict of interest
None of the authors report conflict of interests.
Table 1: Results of questions about knowledge about transmission, epidemiology and symptoms of Zika fever in four cities of Colombia.

<table>
<thead>
<tr>
<th>Cities</th>
<th>Pereira</th>
<th>Dosquebradas</th>
<th>Sincelejo</th>
<th>Cartagena</th>
<th>All cities comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td></td>
<td>n %</td>
<td>n %</td>
<td>p</td>
<td></td>
<td>n %</td>
</tr>
<tr>
<td>1. Zika fever is a disease transmitted by (answer: mosquito bite)</td>
<td>Correct 44</td>
<td>97.8 48 100.0 0.3</td>
<td>16</td>
<td>94.1 48 100.0 0.26</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Incorrect 1</td>
<td>2.2 0 0.0</td>
<td>1</td>
<td>5.9 0 0.0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total 45</td>
<td>100.0 48 100.0</td>
<td>17</td>
<td>100.0 48 100.0</td>
<td>44</td>
</tr>
<tr>
<td>2. Regard symptoms, which proportion of patients present them? (answer: 75%)</td>
<td>Correct 15</td>
<td>33.3 40 83.3</td>
<td>3</td>
<td>17.6 32 66.7 0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Incorrect 30</td>
<td>66.7 8 16.7</td>
<td>14</td>
<td>82.4 16 33.3</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Total 45</td>
<td>100.0 48 100.0</td>
<td>17</td>
<td>100.0 48 100.0</td>
<td>44</td>
</tr>
<tr>
<td>3. Usual incubation period is (answer: 3–12 days)</td>
<td>Correct 36</td>
<td>80.0 47 97.9 0.01</td>
<td>11</td>
<td>64.7 46 95.8 0.49</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Incorrect 9</td>
<td>20.0 1 2.1</td>
<td>6</td>
<td>35.3 2 4.2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Total 45</td>
<td>100.0 48 100.0</td>
<td>17</td>
<td>100.0 48 100.0</td>
<td>44</td>
</tr>
<tr>
<td>4. More frequent symptoms are (answer: fever, conjunctivitis and arthralgia)</td>
<td>Correct 41</td>
<td>91.1 48 100.0 0.05</td>
<td>14</td>
<td>82.4 47 97.9 0.05</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Incorrect 4</td>
<td>8.9 0 0.0</td>
<td>3</td>
<td>17.6 1 2.1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total 45</td>
<td>100.0 48 100.0</td>
<td>17</td>
<td>100.0 48 100.0</td>
<td>44</td>
</tr>
<tr>
<td>5. In order to prevent disease spread in communities, is necessary to (answer: to reduce mosquito bite exposure)</td>
<td>Correct 45</td>
<td>100.0 48 100.0 n/a</td>
<td>13</td>
<td>76.5 43 89.6 0.08</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Incorrect 0</td>
<td>0.0 0 0.0</td>
<td>4</td>
<td>23.5 5 10.4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total 45</td>
<td>100.0 48 100.0</td>
<td>17</td>
<td>100.0 48 100.0</td>
<td>44</td>
</tr>
</tbody>
</table>

Bold values correspond to statistically significant differences (p < 0.05).

References


Juan A. Sabogal-Roman
Public Health and Infection Research Incubator and Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia

David Ricardo Murillo-Garcia
Public Health and Infection Research Incubator and Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia

M. Camila Yepes-Echeverri
Public Health and Infection Research Incubator and Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia

Juan D. Restrepo-Mejia
Public Health and Infection Research Incubator and Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia

Santiago Granados-Alvarez
Public Health and Infection Research Incubator and Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia

Alberto E. Paniz-Mondolfi
Department of Pathology and Laboratory Medicine, Hospital Internacional, Barquisimeto, Venezuela and the Laboratory of Biochemistry, Instituto de Biomedicina / Instituto Venezolano de los Seguros Sociales (IVSS), Caracas, Venezuela

Working Group on Zoonoses, International Society for Chemotherapy, Aberdeen, UK

Committee on Travel Medicine, Pan-American Association of Infectious Diseases, Quito, Ecuador

Wilmer E. Villamil-Gómez
Committee on Travel Medicine, Pan-American Association of Infectious Diseases, Quito, Ecuador

Please cite this article in press as: Sabogal-Roman JA, et al., Healthcare students and workers’ knowledge about transmission, epidemiology and symptoms of Zika fever in four cities of Colombia, Travel Medicine and Infectious Disease (2015), http://dx.doi.org/10.1016/j.tmaid.2015.12.003
Infectious Diseases and Infection Control Research Group,
Hospital Universitario de Sincelejo, Sincelejo, Sucre,
Colombia

Programa del Doctorado de Medicina Tropical, Universidad
de Cartagena, Cartagena, Universidad del Atlántico,
Barranquilla, Colombia

Committee on Zoonoses and Haemorrhagic Fevers,
Asociación Colombiana de Infectología, Bogotá, DC,
Colombia

Diana Carolina Zapata-Cerpa

Infectious Diseases and Infection Control Research Group,
Hospital Universitario de Sincelejo, Sincelejo, Sucre,
Colombia

Keyben Barreto-Rodriguez
Grupo de Investigación, Corporación Universitaria Antonio
José de Sucre CORPOSUCRE, Sincelejo, Sucre, Colombia

Alfonso J. Rodríguez-Morales*

Public Health and Infection Research Incubator and Group,
Faculty of Health Sciences, Universidad Tecnológica de
Pereira, Pereira, Risaralda, Colombia

Working Group on Zoonoses, International Society for
Chemotherapy, Aberdeen, UK

Committee on Travel Medicine, Pan-American Association
of Infectious Diseases, Quito, Ecuador

Infectious Diseases and Infection Control Research Group,
Hospital Universitario de Sincelejo, Sincelejo, Sucre,
Colombia

Committee on Zoonoses and Haemorrhagic Fevers,
Asociación Colombiana de Infectología, Bogotá, DC,
Colombia

*Corresponding author. Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda,
Colombia. Tel.: +57 300 884 7448.
E-mail address: arodriguezm@utp.edu.co (A.J. Rodríguez-
Morales)

9 December 2015