Utilization management in the blood transfusion service

Jeremy Ryan Andrew Peña *, Walter “Sunny” Dzik

Blood Transfusion Service, Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Jackson 220, Boston, MA, USA 02114

Abstract

The scope of activity of the Blood Transfusion Service (BTS) makes it unique among the clinical laboratories. The combination of therapeutic and diagnostic roles necessitates a multi-faceted approach to utilization management in the BTS. We present our experience in utilization management in large academic medical center.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Among the clinical laboratories, the Blood Transfusion Service (BTS) holds a unique niche in that it has three facets: activity devoted to collection and manufacturing (the Blood Donor Center and Processing Laboratory), a component devoted to resource banking, allocation and diagnostics (the Transfusion Service), and a clinical and therapeutic component (the Transfusion/Infusion and Apheresis unit). In addition, unlike other Pathology subspecialties, the primary activity of the BTS is therapeutic and not diagnostic. Delivery of health care is a costly endeavor. Assessment and reassessment of areas for improvement present opportunities for enhancing clinical care, coupled with cost savings. Because of its complexity, a large BTS requires a multi-pronged approach to utilization management.

We present elements of our experience at a large academic hospital, the Massachusetts General Hospital (MGH), in Boston, as an example of this multi-faceted approach. As part of utilization management, we considered the landscape of hemotherapy presented as risk versus cost of this multi-faceted approach. Considering that the annual MGH BTS operating budget, excluding labor, is ~$30 million, it makes sense that cost containment strategies should consider blood product usage.

2. Sources of cost in a blood transfusion service

The MGH is a large academic general hospital (approximately 900+ beds) with an annual Pathology operating budget of about $105 million. Within the Department, Anatomic/Surgical Pathology accounts for 21% of the budget while 50% is allocated to the Clinical Laboratories, other than the Blood Bank. The BTS itself accounts for almost a third (~29%) of the entire Pathology department budget.

Most clinical laboratories use 60–65% of their budget for labor and only 35–40% for consumables. In contrast, only 30% of the MGH BTS budget is used for labor while 70% is allocated for consumables and blood products. The most recent approximate annual costs of blood products at MGH are presented in Table 1.

Considering that the annual MGH BTS operating budget, excluding labor, is ~$30 million, it makes sense that cost containment strategies should consider blood product usage.

3. Data harvesting and analysis

In all areas of utilization management, it is important to acquire multiple pieces of information and then analyze the data. Reviewing Blood Bank data allows for understanding costs and identifying potential areas of improvement in the transfusion service [1].

At MGH, we have made investments in data acquisition and analysis, including dedicated staffing for the BTS information system, to facilitate utilization management. Data are harvested within the blood bank electronic database (HCLL™ and LifeTrak™) using Crystal Reports. This allows us to monitor and characterize blood usage for any individual patient, a particular time period or a category/type of blood/component or a combination thereof. A drawback of our current BTS database is the limited interface with the hospital/clinical data repository. The MGH BTS developed a homegrown software, called the Blood Utilization Report (BUR) [2] that can access information from within the general laboratory databases and generate reports about blood orders along with relevant clinical and laboratory data that clinicians may use in deciding to administer a blood product.

An effective blood utilization program should be targeted at the highest yield areas. Two potential ways of identifying what might be high yield areas is to ask the questions: “Who is ordering the blood?” and “What blood products are being ordered?” Table 2 shows the number of the budget while 50% is allocated to the Clinical Laboratories, other than the Blood Bank. The BTS itself accounts for almost a third (~29%) of the entire Pathology department budget.

Most clinical laboratories use 60–65% of their budget for labor and only 35–40% for consumables. In contrast, only 30% of the MGH BTS budget is used for labor while 70% is allocated for consumables and blood products. The most recent approximate annual costs of blood products at MGH are presented in Table 1.

Considering that the annual MGH BTS operating budget, excluding labor, is ~$30 million, it makes sense that cost containment strategies should consider blood product usage.

3. Data harvesting and analysis

In all areas of utilization management, it is important to acquire multiple pieces of information and then analyze the data. Reviewing Blood Bank data allows for understanding costs and identifying potential areas of improvement in the transfusion service [1].

At MGH, we have made investments in data acquisition and analysis, including dedicated staffing for the BTS information system, to facilitate utilization management. Data are harvested within the blood bank electronic database (HCLL™ and LifeTrak™) using Crystal Reports. This allows us to monitor and characterize blood usage for any individual patient, a particular time period or a category/type of blood/component or a combination thereof. A drawback of our current BTS database is the limited interface with the hospital/clinical data repository. The MGH BTS developed a homegrown software, called the Blood Utilization Report (BUR) [2] that can access information from within the general laboratory databases and generate reports about blood orders along with relevant clinical and laboratory data that clinicians may use in deciding to administer a blood product.

An effective blood utilization program should be targeted at the highest yield areas. Two potential ways of identifying what might be high yield areas is to ask the questions: “Who is ordering the blood?” and “What blood products are being ordered?” Table 2 shows the number of
Blood usage by clinical service is identified by the hospital location since most clinical services have associated hospital locations. This is more informative than tracking blood use by individual patients as patients may move from one clinical service to another. The intensive care units (surgical, medical, cardiac and pediatric), operating rooms (ORs) and Hematology–Oncology/Bone marrow transplant unit are some of the biggest users of blood products. Notably, cardiac surgery and the cardiac ICU are major users of red cell and plasma units while the bone marrow transplant service is a major user of platelet (PLT) concentrates. Blood transfusion guidelines targeted towards these units are a high-yield area for utilization management (see Blood Management Program, below).

In selecting which blood products to target, we select products used in large quantities and products with high adverse event profiles or a combination of both (see Fig. 1). For instance, we have specifically targeted IVIg and rVIIa as high-yield targets for blood utilization management (see Section 5 Blood Management Program, below). Both are used in relatively lower quantities than pRBCs, PLT or FFP. However, both are expensive and their adverse event profile is significantly higher than all three traditional blood components combined.

4. Managing the inventory

Balancing supply and demand is particularly challenging when a product has a short shelf life and the demand varies from day-to-day as is the case with PLT concentrates. Because blood products are perishable, utilization management must also include an analysis of the blood needs of the hospital and the available supply. Overstocking perishable products is wasteful and reduces availability for patients in other hospitals who depend on a common blood supply. On the other hand, it is probably worse to have an insufficient supply of blood products for life-saving therapy.

Although a full cost analysis of our Blood Donor Center and Processing Laboratory activities is beyond the scope of this manuscript, it bears mentioning that selection of what blood products to produce and what types of tests to perform is dependent on hospital utilization patterns.

![Graph](image-url)

Fig. 1. Adverse Risk versus Cost of Select Blood Products. We categorize blood products by rendering a plot of relative severe adverse events (Y-axis) against the relative cost per therapeutic transfusion (X-axis). The relative volumes used at MGH are represented by the size of each bubble. Severe adverse risk was extrapolated from multiple sources and expressed as adverse events per 10^7 transfusions[35-39]. Adverse events for IVIg and off-label use of rVIIa in this figure were limited to thromboses. Only mortality attributed to RBC, whole blood-derived and apheresis platelets (PLT), FFP and albumin transfusions was considered. Relative costs and volumes transfused are specific to the MGH BTS.

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRBC (units)</td>
<td>37,167</td>
<td>36,468</td>
<td>34,602</td>
</tr>
<tr>
<td>FFP (units)</td>
<td>13,093</td>
<td>11,452</td>
<td>10,544</td>
</tr>
<tr>
<td>PLT (doses)</td>
<td>8202</td>
<td>7153</td>
<td>7844</td>
</tr>
<tr>
<td>Albumin (bottles)</td>
<td>23,949</td>
<td>23,359</td>
<td>24,557</td>
</tr>
<tr>
<td>IVIg (grams)</td>
<td>52,085</td>
<td>45,261</td>
<td>44,973</td>
</tr>
<tr>
<td>rVIIa (milligrams)</td>
<td>13,093</td>
<td>11,452</td>
<td>10,544</td>
</tr>
</tbody>
</table>

4. pRBC – packed red blood cells, FFP - fresh frozen plasma, PLT - platelets, rVIIa - recombinant activated factor VII, IVIg - intravenous immune globulin.

Intrinsic costs for the production of blood components include marketing to attract donors, blood collection, processing, testing and storage. One third of our annual pRBC inventory and half of our PLT and FFP units are produced by the MGH Donor Center and processing laboratory activities. All other blood products and derivatives are purchased from manufacturers or blood centers (such as the American Red Cross).

For blood transfusion services that do not make their own blood components, all blood units are purchased from a vendor. In this case there is limited opportunity to request non-leukoreduced units, as only leukoreduced products are offered for sale by our vendor. Leukoreduction (LR) is useful in reducing the risk of some adverse events associated with blood transfusion, including febrile non-hemolytic (FNH) transfusion reactions [3], HLA alloimmunization[4], and transfusion-transmitted CMV infections [5]. However, there is no evidence of benefit of LR applied to every patient. For example, a randomized control trial (RCT), performed at MGH, showed that patients without FNH reactions and whose medical issues did not necessitate prevention of HLA alloimmunization or CMV infection, did not benefit from LR in terms of mortality, length of stay and cost of care [6]. In our hands, the additional cost of pre-storage leukoreduction (the filter) is about $50/unit. In the most recent three years (2010–12), we produced ~36,000 red cell units or about 12,000/year. By rough calculation, this is an annual savings of $600,000.

Coupled with a donor program, come costs associated with infectious disease testing. In order to decrease such costs, pooling strategies have been shown to have some cost benefit in both HIV and HCV testing [7,8]. Another alternative is to determine the cost of infectious agent testing in-house versus sending the specimens to a reference laboratory. Until 2009, the MGH BTS performed HIV, HCV, HBV and HTLV-1/2 testing on all in-house manufactured units. Following a cost analysis, it became clear that in-house infectious agent assays would cost more than sending out blood segments to a reference laboratory in the region.

Germane to inventory management, is the ongoing question of whether fresher blood is better than older blood. Because red blood cells can be stored for up to 42 days following collection, inventory management would become far more complex should the expiration date of red blood cells be substantially shortened [9]. To date, the data are equivocal regarding the superiority of short-duration storage versus longer-duration storage of blood [10]. A number of randomized controlled trials (RCTs) are attempting to address this issue, including the ABLE [11], RECESS and RECAP trials [12]. The MGH is a participant in the latter two trials and is leading another RCT in children with malaria.

Table 2

<table>
<thead>
<tr>
<th>Component</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRBC (units)</td>
<td>37,167</td>
<td>36,468</td>
<td>34,602</td>
</tr>
<tr>
<td>FFP (units)</td>
<td>13,093</td>
<td>11,452</td>
<td>10,544</td>
</tr>
<tr>
<td>PLT (doses)</td>
<td>8202</td>
<td>7153</td>
<td>7844</td>
</tr>
<tr>
<td>Albumin (bottles)</td>
<td>23,949</td>
<td>23,359</td>
<td>24,557</td>
</tr>
<tr>
<td>IVIg (grams)</td>
<td>52,085</td>
<td>45,261</td>
<td>44,973</td>
</tr>
<tr>
<td>rVIIa (milligrams)</td>
<td>13,093</td>
<td>11,452</td>
<td>10,544</td>
</tr>
</tbody>
</table>

4. pRBC – packed red blood cells, FFP - fresh frozen plasma, PLT - platelet, IVIg - intravenous immunoglobulin, rVIIa - recombinant activated factor VII. Albumin is calculated as bottles where 1 bottle is 50 mL of a 25% albumin solution or 250 mL of a 5% solution. Note that these are not corrected for the number of patients or procedures.
(NCT01586923, Transfusion in Malaria). More recently, an RCT found no difference in outcomes among premature low birth weight infants who received 'fresh blood' versus standard storage-age blood [13].

5. Blood management program

Transfusion practices vary from institution to institution. In coronary bypass procedures, for instance, transfusion rates of pRBC, plasma and PLTs are highly variable, an observation that has not changed in the last two decades [14,15]. More recently, this observation of variability in transfusion practice has been shown to occur in non-cardiac surgery [16]. Hemotherapy should be evidence-based to optimize patient care. Utilization management should focus on the development of a multi-pronged, multi-disciplinary blood management program. An excellent review of implementation of a blood management program has been previously described by Yazer[17].

There is a relative paucity of randomized control trials to detail appropriate blood transfusions in specific patient settings, making it a challenge to develop and implement transfusion guidelines. A few studies have resulted in some harmonization of transfusion guidelines particularly in critical care and cardiac surgery [18,19]. Seven prospective RCTs (see Table 3) have examined outcomes in cohorts of patients randomly assigned to liberal or conservative triggers for red cell transfusion. These studies address a broad range of recipients—from premature infants to the elderly. Of particular note, no study has found any advantage to the more liberal use of blood. Despite the findings from these RCTs, some physicians who care for critically ill patients still utilize liberal transfusion triggers [20].

At MGH, BTS-led initiatives, related to development of transfusion guidelines, are made in conjunction with the hospital Transfusion Committee. The Transfusion Committee is an interdisciplinary committee with representation from different clinical specialties including medicine/hematology, emergency medicine, pediatrics, nursing, surgery, anesthesiology and the BTS [25]. The Transfusion Committee reviews available literature and develops algorithms to optimize positive patient outcomes while minimizing unnecessary blood transfusions. In order for guidelines to have the desired effect, the intended audience (i.e. ordering clinicians) should be educated and able to access these documents. Both general and clinical service-specific or patient-specific guidelines are made available by posting key documents in an online handbook. Along with these guidelines the publications that were used to develop the MGH institutional guidelines are also made available. As part of the education process, the MGH BTS also takes advantage of an electronic ordering system. When a blood transfusion is ordered, the clinical indication is scanned triggering automatic notification to the blood bank. The anesthesiologist, in real-time, can see on the operating room computer at the bedside that the blood request was received and acknowledged by the blood bank. When the blood is issued by the laboratory, the component is scanned triggering automatic notification to the operating room computer that the blood has left the Blood Bank.

5.2. Benchmarking using the issue-to-transfusion ratio

A benchmarking process using the “issue to transfusion ratio” (I:T ratio) was adopted to monitor stockpiling. The I:T ratio is the number of blood units that are issued to the patient over the actual number of units that are transfused. Very high I:T ratios suggest stockpiling. We believe the I:T ratio may be a more modern and applicable benchmarking tool than the crossmatch-to-transfusion ratio (C:T ratio) especially in the era of electronic crossmatching.

We reviewed the I:T ratio in the five months preceding implementation of electronic blood ordering system in the ORs. The I:T ratio for pRBCs was 2.8. An I:T ratio of 2.8, means that for every 2.8 units issued, only 1 was transfused; therefore 1.8 units would need to be returned to the blood bank and either placed back into inventory or discarded. In the five months after implementation of the OR electronic blood ordering system, the pRBD I:T ratio decreased to 2.3.

5.3. Audits and gatekeeping of selected blood products

Outside of the operating rooms, ICUs and emergency departments, we have employed an audit and gatekeeper approach. Audits review blood transfusion patterns but do not prohibit a transfusion from occurring. Audits can occur prior to transfusion, immediately after transfusion, or retrospectively (i.e. once daily or weekly review). Haspel provided a description of audits in the BTS [29]. At MGH a sampling of high volume blood components are audited each day. We adopted a process used by the Blood Transfusion Service of the University Health Network, Toronto, Canada in which all units that are investigated for

Table 3

<table>
<thead>
<tr>
<th>Author</th>
<th>Name</th>
<th>Setting</th>
<th>Trigger</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hebert, 1999 [19]</td>
<td>TRIC</td>
<td>Adult ICU</td>
<td>7 vs 9</td>
<td>838</td>
</tr>
<tr>
<td>Kirpalani, 2006 [21]</td>
<td>PINT</td>
<td>Infants < 1 kg</td>
<td>10 vs 12</td>
<td>457</td>
</tr>
<tr>
<td>Hajar, 2010 [18]</td>
<td>TRAC</td>
<td>Cardiac surgery</td>
<td>8 vs 10</td>
<td>502</td>
</tr>
<tr>
<td>Cooper, 2011 [22]</td>
<td>CRT</td>
<td>Acute MI</td>
<td>8 vs 10</td>
<td>45</td>
</tr>
<tr>
<td>Carson, 2011 [23]</td>
<td>FOCUS</td>
<td>Hip surgery</td>
<td>8 vs 10</td>
<td>2,016</td>
</tr>
</tbody>
</table>

* Trigger was hemoglobin level (g/dL).
suspected transfusion reactions are also audited for the appropriateness of blood usage. Transfusions not meeting hospital guidelines are flagged and the ordering physician is notified and offered follow up educational material. This serves to educate physicians about decision making in transfusion in the more compelling context of a transfusion-related adverse event.

In contrast, the gatekeeper function of the BTS requires approval of a BTS staff physician before the blood product is released. At MGH, this is reserved for products with a high risk and high cost profile. Two products in this category are IgG and von Willebrand factor (vWF) (see Fig. 1). As part of the gatekeeper function, these products may be requested by any physician, but released for transfusion only after a BTS physician has reviewed the indication and dose requested. Not all requests are approved.

Platelet transfusions are managed by both audit and gatekeeper functions when necessary. In general, PLT transfusions are not monitored until the PLT inventory falls below a specific level. Prior to a true shortage, PLT requests require BTS approval. In locations not subject to the gatekeeper function, an audit is used. The Blood Bank staff notifies the BTS physician of any patient in these locations that has used significant blood products. The BTS physician can then communicate with the care team to determine the blood needs of the patient and the clinical support needed.

5.4. Point-of-care tests for transfusion decision support

Incorporation of point-of-care (POC) testing as part of the MGH BTS blood management program is being reviewed, implemented and refined to assist in acute hemotherapy decisions. POC devices offer the potential advantage of a more rapid turn-around-time than centralized laboratory testing [30]. The major drawback to POC testing is the challenges related to standardization and quality control [30]. In situations such as cardiac surgery more rapidly available laboratory test results might prove useful. These settings are a logical target for POC testing. In one study, patients undergoing complex cardiac surgery were supported with the use of either routine coagulation tests or with (POC) platelet aggregometry and thromboelastometry [31]. Patients who were managed with POC testing used significantly less red cell, plasma and recombinant VWF. However, the transfusion rates for PLT and PCCs were not affected [31]. Mortality was lower and control of hemostasis was superior in the POC-managed group as measured by chest-tube output in the immediate 24 h post-operative period. Finally, the average cost associated with blood product use in the POC-managed patients was half that of patients managed with routine laboratory coagulation tests [31]. In contrast, a Cochrane review showed that the use of TEG and ROTEM in the setting of massive transfusion to guide hemotherapy did not result in decreased morbidity or mortality but there was a suggestion of decreased bleeding [32]. After a review of the literature, an expert panel was convened as part of a Canadian consensus on massive transfusion. The panel could not recommend the use of such viscoelastic monitoring over routine central laboratory coagulation testing [30].

If the decision is made to incorporate POC testing in acute hemotherapy decisions, the BTS will play an important role in selecting the appropriate POC device or method. The choice of methods has implications for the end-user, who must understand the limitations of each device. For instance, the use of different point-of-care devices for measuring hemoglobin was shown to have varying results [33]. Apart from the specific platform (i.e. central laboratory versus POC assay) the analyte to be assayed should be considered. There is little quality evidence to suggest that coagulation abnormalities, as measured by routine PT/INR and/or PTT, are helpful in predicting bleeding risk [34]. Given this, one might recommend against the use of POC PT/INR devices as screening tools prior to invasive procedures. In short, the selection of the most accurate, reproducible, rapid and clinically meaningful test method and device should be identified. While offering promise, the use of POC devices for hemotherapy decision support requires further study.

6. Summary

Utilization management in the BTS requires a multi-faceted approach due to the scope of practice of transfusion medicine. Evaluating the sources of cost, managing inventory and establishing a blood management program based on evidence will lead to improved patient outcomes while reducing costs.

Acknowledgments

The authors would like to thank Kent Eliason and Amy Slater of the MGH Blood Transfusion Service for their help in gathering data for this manuscript.

References

[34] Segal JB, Dzik WH. Transfusion Medicine/Hemostasis Clinical Trials N. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review. Transfusion 2005;45:1413–25.

