The National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evaluation Study (REDS-III): a research program striving to improve blood donor and transfusion recipient outcomes

Steven Kleinman,1 Michael P. Busch,2,3 Edward L. Murphy,2,4 Hua Shan,5 Paul Ness,6,7 and Simone A. Glynn8 for The National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evaluation Study (REDS-III)

BACKGROUND: The Recipient Epidemiology and Donor Evaluation Study-III (REDS-III) is a 7-year multi-center transfusion safety research initiative launched in 2011 by the National Heart, Lung, and Blood Institute.

STUDY DESIGN AND METHODS: The domestic component involves four blood centers, 12 hospitals, a data coordinating center, and a central laboratory. The international component consists of distinct programs in Brazil, China, and South Africa, which involve US and in-country investigators.

RESULTS: REDS-III is using two major methods to address key research priorities in blood banking and transfusion medicine. First, there will be numerous analyses of large “core” databases; the international programs have each constructed a donor and donation database while the domestic program has established a detailed research database that links data from blood donors and their donations, the components made from these donations, and data extracts from the electronic medical records of the recipients of these components. Second, there are more than 25 focused research protocols involving transfusion recipients, blood donors, or both that either are in progress or are scheduled to begin within the next 3 years. Areas of study include transfusion epidemiology and blood utilization, transfusion outcomes, noninfectious transfusion risks, human immunodeficiency virus–related safety issues (particularly in the international programs), emerging infectious agents, blood component quality, donor health and safety, and other donor issues.

CONCLUSIONS: It is intended that REDS-III serve as an impetus for more widespread recipient and linked donor–recipient research in the United States as well as to help assure a safe and available blood supply in the United States and in international locations.

ABBREVIATIONS: ACASI = audio computer-assisted structured interview; CL = central laboratory; DENV = dengue virus; DRM(s) = drug resistance mutation(s); EMR(s) = electronic medical record(s); GBV-C = GB virus C; GWAS = genomewide association study; MSM = men who disclose having had sex with men; NHLBI = National Heart, Lung, and Blood Institute; OH = obstetric hemorrhage; REDS-III = Recipient Epidemiology and Donor Evaluation Study-III; SANBS = South African National Blood Services; SCD = sickle cell disease; SFTSV = severe fever with thrombocytopenia virus; SNP(s) = single-nucleotide polymorphism(s); TACO = transfusion-associated circulatory overload; TTD(s) = transfusion-transmitted disease(s); TTI(s) = transfusion-transmitted infection(s).

From the 1Department of Pathology, University of British Columbia, Victoria, British Columbia, Canada; 2Blood Systems Research Institute, San Francisco, California; the 3Department of Laboratory Medicine and the 4Department of Laboratory Medicine and Epidemiology/Biostatistics, University of California at San Francisco, San Francisco, California; the 5Department of Pathology and the 6Department of Pathology and Medicine, The Johns Hopkins University, Baltimore, Maryland; the 7Department of Transfusion Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland; and the 8Department of Transfusion Medicine and Cellular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.

Address correspondence to: Steven Kleinman, 1281 Rockcrest Avenue, Victoria, BC, Canada V9A 4W4; e-mail: skleinman@shaw.ca.

REDS-III is supported by NHLBI contracts NHLBI HHSN2682011-00001I, -00002I, -00003I, -00004I, -00005I, -00006I, -00007I, -00008I, and -00009I.

Received for publication July 25, 2013; revision received September 11, 2013, and accepted September 11, 2013.
doi: 10.1111/trf.12468

The Recipient Epidemiology and Donor Evaluation Study-III (REDS-III) is a 7-year transfusion safety research initiative launched in 2011 by the National Heart, Lung, and Blood Institute (NHLBI). It includes a domestic component and three distinct international programs in Brazil, China, and South Africa. REDS-III is a successor program to two previous NHLBI multicenter epidemiology programs, the Retrovirus Epidemiology Donor Studies—REDS and REDS-II—which were initiated more than two decades ago in response to the human immunodeficiency virus (HIV) epidemic. The emphasis of REDS-III has shifted to recipient-based research, particularly transfusion epidemiology and outcomes, and to evaluating whether donor factors affect recipient outcomes. Studies in the areas of blood donor safety and availability and the retention of a rapid response capability to evaluate the threat of new emerging infectious agents in the blood supply remain important features of the current program.

The REDS-III international component focuses on donor and laboratory research aimed at characterizing the current HIV epidemic and decreasing HIV transfusion transmission in non-US settings and in recipients with specific clinical conditions (e.g., obstetric hemorrhage [OH] in South Africa and sickle cell disease [SCD] in Brazil). Additionally, transfusion-transmitted infections (TTIs) that could potentially threaten the safety of the US blood supply are studied. Whenever possible, an integrated approach across international programs is or will be used, with one goal being to improve the scientific and analytical skills of the people responsible for blood safety in developing countries.

INFRASTRUCTURE OF THE REDS-III PROGRAM

The REDS-III domestic program consists of four blood centers, 12 hospitals (each of which receives components from one of the blood centers), a data coordinating center (DCC), and a central laboratory (CL). Collaborations with external organizations (government, blood banking, research laboratories, and industry) are established as needed. The international program consists of the same data coordinating center and CL along with either a national blood organization (e.g., South African National Blood Services [SANBS], which collects blood in eight of the nine South African provinces) or a consortium of regional blood centers (Brazil and China) with additional participation of selected hospitals in focused research protocols (see Table 1 for a list of participating institutions and Fig. 1 for organizational structure).

CONTRIBUTION TO EDUCATION AND TRAINING

REDS-III strives to foster the development of junior investigators who have an interest in epidemiology and

TABLE 1. Participating domestic and international REDS-III institutions

<table>
<thead>
<tr>
<th>Domestic component</th>
<th>Participating domestic and international REDS-III institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Center of Wisconsin (BCW), Milwaukee, WI</td>
<td>Participating blood center: BCW Blood Research Institute</td>
</tr>
<tr>
<td>Four hospitals: St Luke Hospital, Aurora Health Care (high-volume heart hospital), Sinai Hospital, Aurora Health Care (diverse population with large obstetric program), Froedtert Hospital at the Medical College of Wisconsin (tertiary care hospital), and St Joseph Hospital at Marshfield, WI (rural hospital)</td>
<td></td>
</tr>
<tr>
<td>The Institute for Transfusion Medicine (ITXM), Pittsburgh, PA</td>
<td>Participating blood center: ITXM Central Blood Bank</td>
</tr>
<tr>
<td>Three hospitals: University of Pittsburgh Medical Center (UPMC) at Shadyside (tertiary care hospital), UPMC Presbyterian (tertiary care hospital), and UPMC St Margaret (community-based hospital), Pittsburgh, PA</td>
<td></td>
</tr>
<tr>
<td>University of California at San Francisco (UCSF), San Francisco, CA</td>
<td>Participating blood center: Blood Centers of the Pacific</td>
</tr>
<tr>
<td>Three hospitals: UCSF Medical Center (teaching hospital), San Francisco General Hospital (public safety-net hospital), and the San Francisco Veteran Affairs Medical Center</td>
<td></td>
</tr>
<tr>
<td>Yale University School of Medicine, New Haven, CT</td>
<td>Participating blood center: American Red Cross (ARC)—Connecticut Region</td>
</tr>
<tr>
<td>Two hospitals: Yale-New Haven Hospital (tertiary care hospital) and Bridgeport Hospital (community hospital)</td>
<td></td>
</tr>
<tr>
<td>International component</td>
<td>Three large collaborative programs between US institutions and blood banks in countries seriously affected by HIV/AIDS</td>
</tr>
<tr>
<td>Brazil</td>
<td>Blood Systems Research Institute and the Fundação Faculdade de Medicina and Hospital das Clínicas of the Medical School of the University of São Paulo with participation of four blood centers located in Belo Horizonte–Minas Gerais (Fundação Hemominas), Recife–Pernambuco (Fundação Hemope), Rio de Janeiro (Fundação Hemorrio), and São Paulo (Fundação Pro-Sangue).</td>
</tr>
<tr>
<td>China</td>
<td>Johns Hopkins University and the Chinese Institute of Blood Transfusion with participation of five blood centers located in Chongqing, Lanzhou, Luoyang, Mianyang, and Urumqi</td>
</tr>
<tr>
<td>South Africa</td>
<td>University of California San Francisco (UCSF) and the South African National Blood Service (SANBS)</td>
</tr>
<tr>
<td>Domestic and international components</td>
<td>Data coordinating center: RTI International, Rockville MD</td>
</tr>
<tr>
<td>CL: Blood systems Research Institute (BSRI), San Francisco, CA</td>
<td></td>
</tr>
</tbody>
</table>
laboratory research in transfusion medicine. To accomplish this, each domestic hub mentors junior investigators and prepares them to apply for National Institutes of Health career development awards. The international program has several training initiatives, including scientific and mentoring symposia rotating among international sites, attended by senior and junior investigators from all three sites. The most promising overseas junior investigators will also be eligible for 6 to 8 weeks of training at REDS-III institutions in the United States. These efforts are meant to encourage development of multinational analyses and build sustainable relationships between established and new investigators in the United States and international sites.

REDS-III PORTFOLIO

The REDS-III portfolio addresses key research priorities in blood banking and transfusion medicine by conducting analyses of large core databases and focused research protocols that involve enrolling study subjects or testing retained biorepository specimens.

The REDS-III domestic program has established for the first time a detailed research database infrastructure that links data from blood donors and their donations, the components made from these donations, and the recipients of these components; that is, a particular donation can be traced through component production and, if transfused at a participating hospital, to a data extract from the electronic medical record (EMR) of the transfusion recipient. This permits the conduct of numerous analyses that characterize blood component utilization patterns in diverse settings, inform the design of future clinical trials, and potentially determine blood donor or donation effects on recipients’ clinical outcomes. Table 2 provides the number of blood components annually transfused in participating hospitals.

Another large linked donor–recipient database that will be accessed for focused protocol-driven analyses supported by REDS-III is the SCANDAT database, which consists of computerized records of blood donation and transfusion activities dating back to the mid 1960s in Sweden and the early 1980s in Denmark. The database—which through record linkages also can retrieve data from nationwide health data registers for cancer, hospital care, and causes of death—includes data on more than 1.1 million blood donors and more than 1.3 million transfused patients. It is currently being updated, extending coverage through 2012.

Additionally, each international program has established a donor and donation database that will be used to evaluate TTI incidence and prevalence, donor demographics, and return patterns; provide background statistics; and serve as a sampling frame for specific research protocols.

To ensure that the development of focused research protocols encompassed key research priorities in transfusion medicine, an NHLBI-appointed external committee reviewed the general content of the portfolio developed by REDS-III investigators and provided recommendations. Protocol development steps included comprehensive discussions among REDS-III investigators, active support from the scientific community through consultant experts, and review by members of the REDS-III Observational Study Monitoring Board. The portfolio includes more than 25 protocols involving transfusion recipients, blood donors, or both; these either are in progress or are scheduled to launch within the next 3 years. Table 3 groups these protocols by domestic and international site and Table 4 by major scientific subject area. Each protocol is briefly summarized below.

Transfusion epidemiology and blood utilization

Epidemiology of plasma transfusion

There are few US data on use of fresh-frozen plasma or its alternatives (e.g., thawed plasma). This study evaluating
plasma transfusion at 11 hospitals in a recent 1-year period includes data on approximately 70,000 units of transfused plasma. Study aims are to characterize plasma use by patient diagnosis, dose, type of component, and laboratory trigger; determine efficacy when ordered to correct coagulation testing abnormalities; and compare adverse events for ABO identical versus compatible transfusions. The data will help design clinical trial(s) to evaluate plasma transfusion strategies in nontrauma settings.

Transfusion modeling
This REDS-III and Kaiser Permanente Northern California collaboration examines patterns of blood product utilization and predictors of red blood cell (RBC) transfusion in hospitalized patients within an integrated health care delivery system. This retrospective cohort study utilizes data on more than 250,000 transfusions in 450,000 adult hospitalizations over a 4-year period. These data are obtained from EMRs of 3.3 million health plan members (approx. 20% of Northern California’s population) receiving care at 21 hospitals and 56 outpatient clinics. EMR data allow for adjustment to control for each patient’s comorbidities and illness severity.

Pulmonary complications of transfusion (e.g., transfusion-associated circulatory overload [TACO] and transfusion-related acute lung injury [TRALI]) cause significant morbidity and are leading causes of transfusion-associated mortality. Another study objective, utilizing EMR-based approaches for detecting transfusion-related hypoxemia (e.g., vital sign and arterial blood gas data as well as natural language processing of chest X-ray reports to identify pulmonary edema), is to identify these clinical syndromes and evaluate their prevalence, risk factors, and outcomes in a community hospital setting.

RBC utilization in China
This study will retrospectively identify all patients receiving RBC transfusion over a 1-year period in three Chinese hospitals and characterize rates of transfusion by demographics. One-thousand transfused patients at each hospital will be characterized as to demographics, comorbidities, surgical procedures, RBC unit(s) characteristics, and pretransfusion hemoglobin (Hb) concentration. Patients in frequently transfused diagnostic categories and a diagnoses-matched, nontransfused control group will be evaluated to determine the Hb threshold and other clinical features associated with transfusion. The pretransfusion HIV infection rate and data on possible transfusion-transmitted HIV cases will be captured. This study may lead to improved blood use and/or provide data to design clinical trials in China.

Transfusion outcomes

SCD cohort in Brazil
In Brazil, SCD patients receive outpatient care in blood banks (hemocenters). This project will develop a comprehensive database of clinical, laboratory, and transfusion exposure information from 3000 SCD patients treated at the four REDS-III hemocenters. This cohort will be followed for 3 years to define incidence of specific SCD manifestations; characterize blood utilization; identify rates and correlates of transfusion complications including alloimmunization, iron overload, and TTIs such as HIV; determine the effect of chronic transfusion programs on clinical outcomes; describe baseline laboratory variables and their association with clinical outcomes; and assess rates and causes of mortality. A biospecimen collection will be established.

Additionally, to study the impact of transfusion therapy on inflammation, a comprehensive panel of soluble inflammation markers will be measured in serial pre- and posttransfusion samples in 300 SCD patients undergoing acute or chronic transfusion therapy. To investigate the genetic basis of RBC alloimmunization, which has a substantial impact on SCD transfusion
management, a genomewide association study (GWAS) will be performed on DNA from 500 alloimmunized patients and 500 nonalloimmunized controls. Finally, to evaluate the determinants of the apparently low HIV infection rates in SCD patients, a nested case–control study will quantify HIV risk factors and describe clinical outcomes and laboratory findings in HIV-infected SCD patients.

Transfusion in Pregnancy (TIP) in South Africa

In South Africa and other low- or middle-income countries, OH is a major cause of obstetric morbidity and mortality. A recently completed REDS-III pilot study showed that although OH incidence in South Africa is not significantly increased compared to the United States, the peripartum transfusion rate is 10-fold higher. A positive HIV status was associated with transfusion, even after controlling for age, parity, and mode of delivery. We hypothesize that the reasons for this may include antenatal anemia, coagulopathy, and/or variability in institutional and physician practice. To confirm our initial observation of an increased transfusion rate in HIV-infected women, a large case–control study of peripartum transfused versus nontransfused women will be conducted using chart review and laboratory testing. Data on OH management, outcomes, and comorbid disease will be captured. Our second study aim (which uses a cross-sectional, observational study design) is to investigate the causes of antenatal anemia in both anti-HIV–positive and -negative women referred to the specialist antenatal care service.

<table>
<thead>
<tr>
<th>Site</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>Retrospective cohort study of plasma use, TACO, and risk associated with use of ABO-compatible, nonidentical plasma (epidemiology of plasma transfusion)</td>
</tr>
<tr>
<td></td>
<td>Population-based study of the detection and prediction of in-hospital transfusion-related adverse events within the Northern California Kaiser Permanente system (transfusion modeling)</td>
</tr>
<tr>
<td></td>
<td>Red cell in the Elderly Transfusion Outcomes (RETO)</td>
</tr>
<tr>
<td></td>
<td>The genetic basis of alloantibody formation and persistence in blood donors (WBC alloimmunization GWAS)</td>
</tr>
<tr>
<td></td>
<td>Severe Transfusion Reactions Including Pulmonary Edema (STRIPE)</td>
</tr>
<tr>
<td></td>
<td>HIV in SCD patients in vitro evaluation (HIV in SCD in vitro study)</td>
</tr>
<tr>
<td></td>
<td>Mechanisms of GBV-C reduction in mortality and viral load in HIV-infected patients with transfusion-transmitted GBV-C infection in the NHLBI Viral Activation Transfusion Study (GBV-C Impact on HIV Infection)</td>
</tr>
<tr>
<td></td>
<td>RBC-Omics: Genetic basis of 1) differential RBC storage capacity and 2) iron balance and clinical syndromes in high-intensity blood donors</td>
</tr>
<tr>
<td></td>
<td>Cognition, Hb, and Iron Levels in Teen Donors (CHILL)</td>
</tr>
<tr>
<td></td>
<td>Hb and Iron Recovery Study (HEIRS)</td>
</tr>
<tr>
<td></td>
<td>The effect of TMPRSS6 polymorphisms on Hb and iron stores in high-intensity blood donors (TMPRSS6 polymorphisms)</td>
</tr>
<tr>
<td></td>
<td>Establishing a Brazilian SCD cohort and identifying molecular determinants of response to transfusions, genetic determinants of alloimmunization, and risk factors associated with HIV infection (SCD in Brazil)</td>
</tr>
<tr>
<td></td>
<td>DENV incidence and prevalence in Brazilian donors and recipients: evaluating rates and correlates of transfusion transmission and clinical outcomes of infections in recipients (transfusion-transmitted DENV in Brazil)</td>
</tr>
<tr>
<td></td>
<td>HIV risk factor study</td>
</tr>
<tr>
<td></td>
<td>Improving the safety of blood donation in Brazil through an assessment of the effectiveness of HIV notification and counseling and linkage of HIV-positive donors to healthcare (Brazil HIV notification)</td>
</tr>
<tr>
<td></td>
<td>Standardizing staging and molecular characterization of HIV-1 strains in REDS-III international programs (Brazil, China, and South Africa)</td>
</tr>
<tr>
<td></td>
<td>to assure optimal detection of incident infections and classification of genotypes or circulating recombinant forms, drug resistance profiles, and detailed characterization of transmitted or founder viruses (HIV Molecular Surveillance)</td>
</tr>
<tr>
<td></td>
<td>A study of SFTSV seroprevalence and rates of asymptomatic viremia in Chinese blood donors from three Chinese regions (SFTSV in China)</td>
</tr>
<tr>
<td></td>
<td>REDS-III blood utilization study in Chinese hospitals (RBC utilization in China)</td>
</tr>
<tr>
<td></td>
<td>HIV case–control study</td>
</tr>
<tr>
<td></td>
<td>Standardizing staging and molecular characterization of HIV-1 strains in REDS-III international programs (Brazil, China, and South Africa)</td>
</tr>
<tr>
<td></td>
<td>to assure optimal detection of incident infections and classification of genotypes or circulating recombinant forms, drug resistance profiles, and detailed characterization of transmitted or founder viruses (HIV Molecular Surveillance)</td>
</tr>
<tr>
<td></td>
<td>Transfusion in Pregnancy in South Africa (TIP in South Africa)</td>
</tr>
<tr>
<td></td>
<td>Incident HIV and incident HBV infections in South African blood donors: behavioral risk factors, genotypes, and biologic characterization of early infections (Incident HIV/HBV in South Africa)</td>
</tr>
<tr>
<td></td>
<td>Blood donor recruitment and retention in South Africa (South Africa donor recruitment or retention)</td>
</tr>
<tr>
<td></td>
<td>Using a linked donor–recipient database (SCANDAT) to search for new TTDs (searching for new TTIs)</td>
</tr>
<tr>
<td></td>
<td>Apheresis donation and bone fracture risk using the SCANDAT database (apheresis donation and bone fractures)</td>
</tr>
</tbody>
</table>
clinics at Chris-Hani Baragwanath Hospital, a major obstetric referral unit in Johannesburg. Finally, the study will characterize antenatal transfusions using a cross-sectional study design with chart review, thereby providing a descriptive evaluation of transfusion risk before delivery.

Red cell in the Elderly Transfusion Outcomes (RETRO)

This study has two main components. The first uses the REDS-III recipient database to describe RBC transfusion practice in people at 65 years of age, who comprise more than 60% of US transfusion recipients. The database captures demographics, diagnoses, RBC dose and frequency, medications, and Hb transfusion trigger and response data on inpatients and outpatients at 12 REDS-III hospitals. Questions to be addressed include the Hb threshold for transfusion and whether it varies over time, by hospital, or underlying disease.

Older adults with chronic anemia receive frequent outpatient transfusions to alleviate symptoms such as fatigue or dyspnea. The second study component, a prospective observational study in which each patient serves as his or her own control, will determine the impact of transfusion on function and quality of life in 200 outpatients at least 65 years of age. Enrollees will be evaluated for their performance on a 6-minute walk test and on standardized surveys for fatigue and dyspnea before and after transfusion.

Noninfectious transfusion risks

White blood cell alloimmunization GWAS

Alloimmunization, whether to RBC or white blood cell (WBC) antibodies, may have a host genetic component that could provide insights into how to identify recipients at risk for this transfusion complication and possibly lead to preventative transfusion strategies.

This GWAS tests the hypothesis that host genetic polymorphisms increase the risk of WBC antibody formation given allogeneic exposure to nonhost HLA antigens. With the use of samples from the REDS-II Leukocyte Antibody Prevalence Study biorepository, analyses will compare genotypes of 772 HLA alloantibody–positive women of European ancestry with those of 772 HLA alloantibody–negative women with at least two

<table>
<thead>
<tr>
<th>Table 4. REDS-III protocols classified by broad scientific subject area and population studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject area</td>
</tr>
<tr>
<td>Transfusion epidemiology/blood utilization</td>
</tr>
<tr>
<td>Transfusion outcomes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Noninfectious transfusion risks</td>
</tr>
<tr>
<td>HIV</td>
</tr>
<tr>
<td>Emerging infectious agents</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Blood component quality</td>
</tr>
<tr>
<td>Donor health and safety</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Donor deferral criteria</td>
</tr>
<tr>
<td>Donor recruitment and retention</td>
</tr>
</tbody>
</table>
Severe Transfusion Reactions Including Pulmonary Edema (STRIPE)

This study of severe pulmonary transfusion reactions, with an emphasis on TACO, will be conducted at four hospitals (one per hub). An automated electronic monitoring system will be evaluated for its sensitivity and specificity in TACO diagnosis. The automated system will screen real-time data (arterial blood gas, oxygen saturation, and chest radiographs) to identify adult patients with posttransfusion hypoxemia. A nurse coordinator at each hospital will summarize these cases for adjudication by an expert panel of critical care physicians. In addition, these coordinators will perform medical record review (i.e., active hemovigilance) of more than 40,000 transfusions for cardiopulmonary reactions including TACO, TRALI, sepsis, anaphylaxis, and hypotension. Results will be compared with the rate of routine operational reporting of these reactions.

A year-long case–control study of TACO risk factors will follow. Cases (n = 250) will be detected using the validated monitoring system and controls (n = 500) will be selected concurrently from transfused, unaffected patients. A natriuretic peptide, NT-pro-BNP, will be measured before and after transfusion. Information on predictor variables (e.g., demographics, blood products transfused, infusion rates, fluid balance, coexisting cardiac disease, and other medical conditions) and outcomes (e.g., intensive care unit and hospital stay and survival to discharge) will be collected and used to develop a predictive algorithm for TACO.

Risk factors in Chinese donors

This study has two hypotheses. The first is that high-risk heterosexual behavior including having commercial sex and/or multiple concurrent sex partners will replace injection drug use and MSM as the leading HIV risk factor for infection among Chinese blood donors, reflecting the major transmission modes in the general population. Second, the study will evaluate whether there is increased HIV subtype diversity and primary DRMs among recently infected donors, regardless of specific risk factors. Enrollment is targeted at 25 HIV-positive cases annually at each of four centers over 4 years. Enrollees will provide a blood sample and complete an audio computer-assisted structured interview (ACASI) about risk factors and motivation to donate blood.

Risk factors in Brazilian donors

This study has two hypotheses. The first is that high-risk heterosexual behavior including having commercial sex and/or multiple concurrent sex partners will replace injection drug use and MSM as the leading HIV risk factor for infection among Brazilian blood donors, reflecting the major transmission modes in the general population. Second, the study will evaluate whether there is increased HIV subtype diversity and primary DRMs among recently infected donors, regardless of specific risk factors. Enrollment is targeted at 25 HIV-positive cases annually at each of four centers over 4 years. Enrollees will provide a blood sample and complete an audio computer-assisted structured interview (ACASI) about risk factors and motivation to donate blood.

Incident HIV and HBV in South African donors

This study has several hypotheses: 1a) Risk factors for HIV incident infection will include a recent change in sexual

HIV studies

Each international program will calculate HIV prevalence and incidence in donors and residual risk in recipients; conduct molecular surveillance to determine HIV genotypes and drug resistance mutations (DRMs); and evaluate HIV risk factors in HIV-positive donors. These studies will build on previous REDS-II efforts in Brazil and China but will place an increased emphasis on recently infected donors who are defined as HIV nucleic acid test (NAT) reactive, HIV antibody negative (i.e., NAT yield), or HIV NAT reactive and HIV antibody positive but negative on the HIV antibody limiting antigen avidity assay.

Molecular surveillance

Coordinated by the REDS-III CL (i.e., Blood Systems Research Institute), investigators from the three international programs have exchanged protocols to optimize their methods for HIV amplification and sequencing. The CL, in collaboration with EQAPOL (a National Institute of Allergy and Infectious Diseases–funded HIV quality control program), has constructed a 50-specimen HIV test panel to be assayed by each laboratory to ensure sensitivity and accuracy of their in-country techniques. The panel consists of cultured and highly characterized viruses from recently transmitted HIV isolates; it includes diverse genotypes, circulating recombinant forms, and viruses with DRMs.

To further pursue the aim of global molecular surveillance, the REDS-III CL is performing full-genome deep sequencing of HIV isolates from US, Brazil, and South African blood donor specimens collected in the 1990s and recently. Data analysis will evaluate whether the genetic composition of HIV-1 variants that are transmitted to newly infected persons (i.e., so-called transmitter or founder variants) has undergone evolution over the past two decades.

Target enrollment is 300 cases and 600 controls in five HIV high-prevalence regions over 4 years. Enrollees will provide a blood sample and complete a mail or online questionnaire about medical and behavioral risk factors and motivation for donation.

pregnancies. In parallel, a follow-up study has enrolled 248 of these women and one or more of their children to evaluate the degree of HLA mismatching between them.

These GWAS data may be informative to the planned REDS-III GWAS of RBC alloimmunization in Brazilian SCD patients.
partner, older male–younger female sexual partnership, a greater number of recent sexual partners, unprotected receptive anal intercourse, and lower socioeconomic status; 1b) Risk factors for hepatitis B virus (HBV) incident infection will include a greater number of recent sexual partners, recent scarification/tattoo/body markings, and history of personal contact with an HBV-infected person; 2a) DRMs will increase as HAART is administered to a larger percentage of HIV-infected South Africans; and 2b) Incident HBV infections will show an increase of genotype E compared to public health data on prevalent infections. A frequency-matched case–control study will be conducted. There will be two case groups: incident HIV-infected blood donors ($n = 300$) and incident HBV-infected blood donors ($n = 150$), both to be compared to infectious marker negative controls ($n = 900$). An ACASI questionnaire will be completed. HIV subtype and DRM profiles will be characterized and viral loads determined in all HIV incident cases, as will HBV genotype and viral load in all incident HBV infections. Donors with incident and elite controller HIV infections will be prospectively followed for three additional visits at 2, 3, and 6 months after index donation.32

Brazil HIV notification

In Brazil, blood donors with a reactive infectious disease screening test result receive a nonspecific letter requesting their return for follow-up. Approximately 40% do not return and thus do not undergo confirmatory testing nor receive the counseling and referral information provided by Brazilian blood centers.33

This study will analyze the proportion of donors who are successfully notified of reactive screening results and determine if this varies by type of infection. Additionally, a cohort of HIV-positive former donors who participated in REDS-II and REDS-III HIV case interviews between 2008 and 2013 will participate in ACASI interviews to assess the effectiveness of HIV notification and counseling by evaluating donor follow-up activities (HIV infection treatment and transmission prevention behaviors) and to determine ways to improve the disclosure of HIV risks during donor eligibility assessments.34

HIV in SCD in vitro study

To evaluate whether there is a biologic basis for the apparent lower-than-expected prevalence of HIV in SCD populations,14 peripheral blood mononuclear cells from HIV-negative SCD patients and non-SCD control patients will be evaluated for in vitro susceptibility to HIV infection. Second, the inflammatory cytokine profile in the blood of HIV-negative SCD patients will be compared to that of HIV elite controllers. The epidemiologic (e.g., behavioral risk factor) aspects of HIV infection in SCD patients will be studied as part of the Brazil SCD project (see above).

GB virus C impact on HIV infection

GB virus C (GBV-C), a flavivirus discovered in 1995, is highly prevalent but not associated with any disease. Some investigators have observed longer survival among HIV-infected individuals who have active GBV-C coinfection.35 Previous data analyses from the NHLBI Viral Activation Transfusion Study looked for an effect of both existing GBV-C infection and acute GBV-C RNA acquisition (presumably through transfusion) on markers of HIV disease progression and all-cause mortality.36,37 Acquisition of GBV-C infection was associated with lower mortality among patients with advanced HIV infection that was independent of HIV risk behaviors, treatment status, HIV viral load, and CD4+ T-cell count before GBV-C infection.

This study will further characterize the impact of GBV-C coinfection on HIV disease progression and identify mechanisms by which coinfection may influence HIV infection outcome. Specifically, this project will evaluate whether the immune response triggered by GBV-C helps to control HIV replication.38 Using a case–control design, the study will compare inflammation and cellular activation markers consistent with HIV infection in 262 Viral Activation Transfusion Study specimens from 30 subjects with and 30 subjects without GBV-C coinfection.

Emerging infectious agents

Transfusion-transmitted dengue virus (DENV) in Brazil

Dengue virus (DENV) is considered a serious emerging infectious threat for the United States. Annually, approximately 390 million DENV infections occur worldwide with approximately 96 million of these being clinically apparent infections.39 The DENV group consists of four closely related viruses, DENV 1 to 4.40 Infection with a given DENV results in seropositivity and confers immunity to that virus. However, this does not protect against infection with another DENV; further, these secondary infections are associated with worse clinical outcomes. High viremia rates in blood donors have been documented during epidemic periods and transfusion-transmission has been confirmed in several locations.41

This study has retrospectively tested approximately 20,000 donations from the 2012 dengue transmission season in two Brazilian cities using a highly sensitive dengue RNA assay.32 This test has also been applied to posttransfusion samples from approximately 1200 enrolled recipients to determine the transfusion transmission rate from RNA-positive donations. Reactive samples are being characterized for viral type, viral load, and DENV immunoglobulin (Ig)M, IgG, and type-specific antibodies. Clinical outcomes of DENV infection in recipients over a 30-day interval are being evaluated. In addition, a large linked donor–recipient repository for future arbovirus research has been established.
The prevalence of previous DENV infection and the incidence of new infections in donors after the 2012 epidemic season are being determined through IgM and IgG antibody testing. This will allow estimation of the viremic window period detected by the DENV RNA assay and correlation of seasonal incidence with detection of asymptomatic donor viremia and community reported clinical disease rates.

Searching for new TTIs

The ability to rapidly identify and manage emerging TTIs is of vital importance. Rapid response capability requires an understanding of the etiology of a transfusion-transmitted disease (TTD) and the nature of the agent. Conceptually, it is possible to study TTDs by searching for risk associations either between blood donors and their respective recipients or within clusters of patients who receive blood from the same donor. This study will use the SCANDAT database to search for such risk correlations either to identify or to exclude new or unknown TTDs. Analyses will first be conducted using retrospective data with subsequent plans to develop methods for prospective blood safety surveillance.

Severe fever with thrombocytopenia virus in China

In 2009, researchers identified a bunyavirus as the probable cause of a newly discovered disease in central and northeast China. Documented person-to-person transmission has been attributed to blood contact (and possibly also to droplet contact), raising the possibility that infection may be transfusion transmitted. The prevalence and incidence of severe fever with thrombocytopenia virus (SFTSV) infection in Chinese blood donors are currently unknown. This cross-sectional study will perform SFTSV antibody and polymerase chain reaction testing of approximately 15,000 blood donor samples from an endemic region and 3000 samples from two nonendemic regions. Seroprevalence and viremia rates and demographic characteristics of seropositive and viremic donors will be determined.

Blood component quality

RBC-Omics Part I: genetic basis of differential RBC storage capacity

While some elements of the RBC storage lesion are well characterized (e.g., free Hb release, increasing levels of RBC-derived microparticles, loss of RBC deformability, and enzymatic activities), little is known about the molecular mechanisms of hemolysis and how hemolysis propensity varies among individuals and is modulated. There are more than 4000 identified polymorphisms affecting RBC stability and life span, yet none have been evaluated for their effects on RBC storage variables. Further, these likely represent only a subset of relevant polymorphisms with many as yet undiscovered variants affecting storage hemolysis.

This study will pursue the hypothesis that genetic variation underlies the variable propensity of donors’ RBCs for storage hemolysis by evaluating 14,000 distinct donors (including 2000 black and 2000 Asian donors) and their RBC donations. Samples from stored leukoreduced RBC components will be analyzed for spontaneous and stress-induced storage (42-day) hemolysis. Several hundred donors with high or low hemolysis will be recalled for repeat testing and more detailed evaluation of hemolysis kinetics and metabolomics as well as exome sequencing to identify new variants linked to storage hemolysis. Detailed genetic testing employing a genotyping array that will include all known and newly identified polymorphisms will then be conducted on DNA from all 14,000 enrolled and phenotyped donors. A shareable biorepository will be established.

Donor health and safety

Apheresis donation and bone fracture risk

Exposure to citrate during apheresis platelet (PLT) donation triggers changes in ionized serum calcium, parathyroid hormone, and markers of bone metabolism suggesting that persistent alterations in bone density may occur. However, no data exist on the association of history of apheresis donation and the risk of bone fracture. The SCANDAT database of donation and hospital admissions data for approximately 200,000 Scandinavian apheresis donors will be used to evaluate if frequent apheresis donation increases fracture risk (in particular, osteoporosis fractures). Data will be analyzed as a cohort study with time-dependent exposure data taking into account apheresis donation activity, age, sex, socioeconomic factors, and prescription drug use.

Cognition, Hb, and Iron Levels in Teen Donors (CHILL)

The clinical significance of iron deficiency in blood donors is unclear. Teenage blood donors may be a particularly vulnerable population since there is a high rate of iron deficiency in young women and both sexes are still undergoing neurocognitive and physical development.

This study will longitudinally examine whether 16- to 18-year-old donors experience neurocognitive deficits or clinically relevant fatigue and, if so, whether these are related to Hb, iron status, and blood donation activity. A cohort of approximately 400 high school students will be randomly assigned to “donation” or “no-donation” groups, with an equal number of males and females in each. Predonation neurocognitive status will be assessed using tests of short-term memory, attention, and processing speed. A brief self-administered questionnaire
covering physical, mental, and emotional domains of fatigue and vigor will be administered. Study participants will be encouraged to return to subsequent blood drives for follow-up donations (or nondonation visits) and neurocognitive and fatigue assessments. Hematologic and iron status will be compared to 19- to 29-year-old donors enrolled in the REDS-II RISE study.55

Hb and Iron Recovery Study (HEIRS)
This prospective randomized clinical trial (ClinicalTrials.gov; identifier NCT01555060) will determine the time to recovery of Hb and iron stores in iron-replete and -depleted blood donors after whole blood donation and whether iron replacement therapy improves Hb recovery in iron-depleted individuals. These data will contribute to decisions about required intervals between donations and the value of iron supplementation to optimize blood donor iron health.56,57 This study will assess daily iron supplementation over 24 weeks, more than twice as long as other trials, to test the hypothesis that postdonation iron supplementation will reduce mean Hb recovery time by more than 50%.58 Secondary objectives are to examine recovery times of Hb and iron stores in relation to donors’ sex and age. The study has enrolled 200 donors into four cohorts based on their ferritin values (≤ or >26) and administration of iron supplementation over the course of the study. Hb and ferritin testing were performed at seven study visits spanning the 24-week postdonation interval.

TMPRSS6 polymorphisms
Although a substantial percentage of repeat blood donors develop iron deficiency anemia, some do not.59 Whereas behavioral factors such as iron supplementation can account for some of this variation, genetic factors—particularly polymorphisms in genes regulating dietary iron absorption—likely also contribute. Several GWAS have linked a common single-nucleotide polymorphism (SNP) in TMPRSS6, a key iron regulatory protein, with differences in Hb concentration and transferrin saturation.59-61 This polymorphism (SNP), rs855791, is a valine-to-alanine amino acid change. Using a retrospective cohort design, a SNP analysis will evaluate this TMPRSS6 polymorphism among approximately 900 repository samples from the REDS-II RISE study; relate this to existing data for ferritin, soluble transferrin receptor, and Hb; evaluate whether this polymorphism is associated with higher baseline Hb and greater iron stores in first-time blood donors; and evaluate whether donors with this polymorphism are less likely to become iron deficient when subjected to the stress of repeated blood donation. Cohorts include male and female first-time donors, male donors who were iron deficient on at least one donation attempt, and high-intensity donors (e.g., five to six annual donations without developing iron deficiency).

RBC-Omics Part II: iron balance and clinical syndromes in high-intensity blood donors
A second arm of the RBC-Omics study will evaluate the genetic basis of iron balance in a specially recruited subgroup of 2000 high-intensity donors who have maintained adequate Hb levels despite very frequent donation.62 The same GWAS described under RBC-Omics Part I will investigate whether iron balance, donation frequency, and the iron-dependent conditions of restless leg syndrome and pica (using data obtained via questionnaire) are associated with specific genetic polymorphisms.63,64

Donor deferral criteria
Blood DROPS
Many countries are reexamining the policy of deferring blood donations from MSM and are conducting risk analyses of current policies and their potential modifications.65 In the United States, there is a paucity of data to address important aspects of the policy such as why some MSM donors fail to self-defer, although this information is central to potential changes in the policy.66 This study will assess motivations for blood donation in the US MSM population and compliance with the current policy. Focus groups will be conducted with 16 key informants in each of the four communities where REDS-III blood centers are located. MSM with no history of injection drug use who believe or know themselves to be negative for HIV, hepatitis C virus, and HBV will be asked to comment on: 1) perceptions of the current donor deferral policy, 2) suggestions of changes to the screening process, and 3) estimates of their own risk as blood donors. In the next stage of the study, a Web-based survey will assess the frequency of compliance with current policy, donation motivations, and intended compliance with potential modified MSM policies; enrollment goals are 1600 MSM community members and 3200 male blood donors from REDS-III blood centers. Those MSM who report a history of blood donation will be asked to participate in qualitative telephone interviews to assess their motivations.

Donor recruitment and retention
South Africa donor recruitment and retention
In Africa, less than 40% of the blood needed for transfusion is currently available and African blood services must diversify and expand their pool of donors.67 South Africa has a skewed distribution of blood donors with only 26% of units collected from the majority black population. This is due in part to historical practices now abandoned as well as other factors including cultural obstacles to marketing, socioeconomic influences and educational differences.68
This study investigates how to increase donation and return rates among black donors. As an initial step in understanding donor motivators or deterrents, secondary analyses of focus group data collected by SANBS has been performed. Next, using a prospective cohort design with “exposure” defined by motivator or deterrent profiles determined by an operational questionnaire administered to black donors by SANBS soon after first donation, the outcome of return for a second donation will be assessed through analysis of the REDS-III donor database. Finally, SANBS recruitment staff will use these findings to develop recruitment messages and strategies (e.g., cell phone contact and text messaging) for increasing donor return rates. Using a randomized study design, researchers will determine if donor return is increased by exposure to SANBS marketing campaigns with varied content and/or by educational interventions aimed at reducing donor fear.

SUMMARY AND CONCLUSIONS

The infrastructure and goals of REDS-III will contribute significantly to stronger recipient and linked donor–recipient research in the United States and will address key blood banking and transfusion safety concerns, influence policy development with regard to blood donor screening and counseling, provide quantitative evaluation of relevant issues, and help assure a safe and available blood supply. To broaden its scientific perspectives, REDS-III has established collaborations with several scientific research laboratories, has convened protocol-specific external expert advisory committees, and is interfacing with government agencies and private industry. In addition, the REDS-III portfolio has been designed to be both hypothesis driven and hypothesis generating by including the development of new basic and translational research projects that should be highly informative to the fields of hematology and immunology. Finally, REDS-III actively encourages the development of new research collaborations that seek to leverage its infrastructure and the use of its data and/or biospecimens.

CONFLICT OF INTEREST

The authors report no conflicts of interest or funding sources.

ACKNOWLEDGMENTS

We thank the following: 1) REDS-III investigators who prepared synopses of one or more protocols for inclusion in this manuscript: Walter Biakkowski, Dr Evan Bloch, Dr Brian Custer, Dr Gustaf Edgren, Dr Shannon Kelly, Dr Joseph E. Kiss, Dr Emily Liu, Dr Alan E. Mast, Dr Nareg Roubinian, Bryan Spencer, Dr Elizabeth St Lezin, and Dr Darrell J. Triulzi; 2) members of the REDS-III Observational Study Monitoring Board for reviewing and monitoring the REDS-III protocols (Neil Blumberg [co-chair], Merlyn Sayers [co-chair], Marion Danis, Harold Kaplan, and Sharina Person); 3) the external panel of experts (Harvey Klein [chair], Mark Fung, Louis Katz, Karen Quillen, and Lynne Uhl), for their thoughtful review of REDS-III’s scientific priorities; and 4) Julie Ann Miller, formerly of RTI International, for organizational and editorial assistance. (For REDS-III, see Appendix.)

REFERENCES

APPENDIX

The NHLBI Recipient Epidemiology Donor Evaluation Study-III domestic component is the responsibility of the following persons:

Hubs:
A.E. Mast and J.L. Gottschall, BloodCenter of Wisconsin (BCW), Milwaukee, WI
D.J. Triulzi and J.E. Kiss, The Institute for Transfusion Medicine (ITXM), Pittsburgh, PA
E.L. Murphy, University of California, San Francisco (UCSF) and Blood Centers of the Pacific (BCP), San Francisco, CA and E.W. Fiebig, University of California, San Francisco (UCSF), San Francisco, CA
E.L. Snyder, Yale University School of Medicine, New Haven, CT and R.G Cable, American Red Cross Blood Services, Farmington, CT

Data coordinating center:
D.J. Brambilla and M.T. Sullivan, RTI International, Rockville, MD
Central laboratory:
M.P. Busch and P.J. Norris, Blood Systems Research Institute, San Francisco, CA

Publication Committee Chairman:
R.Y. Dodd, American Red Cross, Holland Laboratory, Rockville, MD

Steering Committee Chairman:
S.H. Kleinman, University of British Columbia, Victoria, BC, Canada

National Heart, Lung, and Blood Institute, National Institutes of Health:
S.A. Glynn and A.M. Cristman

The NHLBI Recipient Epidemiology Donor Evaluation Study-III international component is the responsibility of the following persons:

International sites:

US-Brazil collaboration
M.P. Busch, REDS-III U.S. Principal Investigator; and B. S. Custer, REDS-III U.S. Co-Principal Investigator, Blood Systems Research Institute, San Francisco, CA
E.C. Sabino, REDS-III Brazil Principal Investigator, the Fundacao Faculdade de Medicina and Hospital das Clinicas of the Medical School of the University of Sao Paulo, Brazil; and A.F. Carneiro Projetti, REDS-III Brazil Co-Principal Investigator, Fundacao Hemominas, Bello Horizonte, Brazil

US-China collaboration
H. Shan, REDS-III U.S. Principal Investigator; and P.M. Ness, REDS-III U.S. Co-Principal Investigator, The Johns Hopkins University, Baltimore, MD

J.X. Wang, REDS-III China Principal Investigator, The Chinese Institute of Blood Transfusion (IBT), China

US-South Africa collaboration
E.L. Murphy, REDS-III U.S. Principal Investigator, University of California, San Francisco (UCSF), San Francisco, CA; and E.M. Bloch, REDS-III U.S. Co-Principal Investigator, Blood Systems Research Institute, San Francisco, CA
C. Ingram, REDS-III South Africa Principal Investigator (phase 2), R. Crookes, REDS-III South Africa Principal Investigator (phase 1), and R. Reddy, REDS-III South Africa, Co-Principal Investigator, the South African National Blood Service (SANBS), South Africa

Data coordinating center:
D.J. Brambilla and M.T. Sullivan, RTI International, Rockville, MD

Central laboratory:
M.P. Busch and P.J. Norris, Blood Systems Research Institute, San Francisco, CA

Publication Committee Chairman:
R.Y. Dodd, American Red Cross, Holland Laboratory, Rockville, MD

Oversight Steering Committee Chairman:
S.H. Kleinman, University of British Columbia, Victoria, BC, Canada

National Heart, Lung, and Blood Institute, National Institutes of Health:
S.A. Glynn and A.M. Cristman